Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Medicine (Baltimore) ; 101(41): e31102, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2077961

ABSTRACT

BACKGROUND: To study the changes and effects of angiotensin-converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang1-7) and ACE/AngII in people with different glucose metabolisms and to explore the possible mechanisms underlying the severity of COVID-19 infection in diabetic patients. METHODS: A total of 88 patients with type 2 diabetes, 72 patients with prediabetes (impaired fasting glucose, 30 patients; impaired glucose regulation, 42 patients), and 50 controls were selected. Changes and correlations of ACE2, Ang1-7 and other indicators were detected among the three groups. Patients were divided into four groups according to the course of diabetes: <1 year, 1-5 years, 5-10 years, and >10 years. ACE2 and Ang1-7 levels were compared and analyzed. RESULTS: ACE2 and Ang1-7 increased with the severity of diabetes (P0 < .05 or P < .01). The levels of ACE2 and Ang1-7 in the longer course group were lower than those in the shorter course group, whereas the levels of ACE, Ang II, and interleukin-6 (IL-6) gradually increased (P < .05). Pearson correlation analysis showed that ACE2 was positively correlated with IL-6, FBG, and 2hPBG levels in the prediabetes group. In the diabetic group, ACE2 was positively correlated with Ang1-7 and negatively correlated with ACE, AngII, IL-6, and C-reactive protein levels. Multiple linear regression analysis showed that IL-6 and ACE were the main factors influencing ACE2 in the diabetic group. CONCLUSION SUBSECTIONS: ACE2/Ang1-7 and ACE/AngII systems are activated, and inflammatory cytokine release increases in prediabetes. With the prolongation of the disease course, the effect of ACE2/Ang1-7 decreased gradually, while the effect of ACE/AngII increased significantly. Dysfunctions of ACE2/Ang1-7 may be one of the important mechanisms underlying the severity of COVID-19 infection in patients with diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Diabetes Mellitus, Type 2 , Prediabetic State , Humans , Angiotensin I/metabolism , Angiotensin II , Angiotensin-Converting Enzyme 2/metabolism , C-Reactive Protein , Glucose , Interleukin-6 , Peptide Fragments/metabolism
2.
J Phys Chem B ; 126(20): 3648-3658, 2022 05 26.
Article in English | MEDLINE | ID: covidwho-1947182

ABSTRACT

Aggregates of α-synuclein are thought to be the disease-causing agent in Parkinson's disease. Various case studies have hinted at a correlation between COVID-19 and the onset of Parkinson's disease. For this reason, we use molecular dynamics simulations to study whether amyloidogenic regions in SARS-COV-2 proteins can initiate and modulate aggregation of α-synuclein. As an example, we choose the nine-residue fragment SFYVYSRVK (SK9), located on the C-terminal of the envelope protein of SARS-COV-2. We probe how the presence of SK9 affects the conformational ensemble of α-synuclein monomers and the stability of two resolved fibril polymorphs. We find that the viral protein fragment SK9 may alter α-synuclein amyloid formation by shifting the ensemble toward aggregation-prone and preferentially rod-like fibril seeding conformations. However, SK9 has only a small effect on the stability of pre-existing or newly formed fibrils. A potential mechanism and key residues for potential virus-induced amyloid formation are described.


Subject(s)
Amyloidogenic Proteins , Coronavirus Envelope Proteins , Parkinson Disease , Peptide Fragments , alpha-Synuclein , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , COVID-19/virology , Coronavirus Envelope Proteins/chemistry , Coronavirus Envelope Proteins/metabolism , Humans , Parkinson Disease/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , SARS-CoV-2/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism
3.
J Am Chem Soc ; 144(7): 2968-2979, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1683928

ABSTRACT

Coronavirus disease-2019 (COVID-19), a potentially lethal respiratory illness caused by the coronavirus SARS-CoV-2, emerged in the end of 2019 and has since spread aggressively across the globe. A thorough understanding of the molecular mechanisms of cellular infection by coronaviruses is therefore of utmost importance. A critical stage in infection is the fusion between viral and host membranes. Here, we present a detailed investigation of the role of selected SARS-CoV-2 Spike fusion peptides, and the influence of calcium and cholesterol, in this fusion process. Structural information from specular neutron reflectometry and small angle neutron scattering, complemented by dynamics information from quasi-elastic and spin-echo neutron spectroscopy, revealed strikingly different functions encoded in the Spike fusion domain. Calcium drives the N-terminal of the Spike fusion domain to fully cross the host plasma membrane. Removing calcium, however, reorients the peptide back to the lipid leaflet closest to the virus, leading to significant changes in lipid fluidity and rigidity. In conjunction with other regions of the fusion domain, which are also positioned to bridge and dehydrate viral and host membranes, the molecular events leading to cell entry by SARS-CoV-2 are proposed.


Subject(s)
Lipid Bilayers/metabolism , Peptide Fragments/metabolism , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Cholesterol/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Neutron Diffraction , Protein Domains , Scattering, Small Angle , Spike Glycoprotein, Coronavirus/chemistry , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
4.
Chem Commun (Camb) ; 58(11): 1804-1807, 2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-1639537

ABSTRACT

We present the finding of a dimeric ACE2 peptide mimetic designed through side chain cross-linking and covalent dimerization. It has a binding affinity of 16 nM for the SARS-CoV-2 spike RBD, and effectively inhibits the SARS-CoV-2 pseudovirus in Huh7-hACE2 cells with an IC50 of 190 nM and neutralizes the authentic SARS-CoV-2 in Caco2 cells with an IC50 of 2.4 µM. Our study should provide a new insight for the optimization of peptide-based anti-SARS-CoV-2 inhibitors.


Subject(s)
Antiviral Agents/pharmacology , Peptide Fragments/pharmacology , Peptidomimetics/pharmacology , SARS-CoV-2/drug effects , Amino Acid Sequence , Angiotensin-Converting Enzyme 2/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/metabolism , Cell Line, Tumor , Humans , Microbial Sensitivity Tests , Peptide Fragments/chemical synthesis , Peptide Fragments/metabolism , Peptidomimetics/chemical synthesis , Peptidomimetics/metabolism , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
5.
MAbs ; 14(1): 2021601, 2022.
Article in English | MEDLINE | ID: covidwho-1625321

ABSTRACT

Coronavirus disease 2019, caused by SARS-CoV-2, remains an on-going pandemic, partly due to the emergence of variant viruses that can "break-through" the protection of the current vaccines and neutralizing antibodies (nAbs), highlighting the needs for broadly nAbs and next-generation vaccines. We report an antibody that exhibits breadth and potency in binding the receptor-binding domain (RBD) of the virus spike glycoprotein across SARS coronaviruses. Initially, a lead antibody was computationally discovered and crystallographically validated that binds to a highly conserved surface of the RBD of wild-type SARS-CoV-2. Subsequently, through experimental affinity enhancement and computational affinity maturation, it was further developed to bind the RBD of all concerning SARS-CoV-2 variants, SARS-CoV-1 and pangolin coronavirus with pico-molar binding affinities, consistently exhibited strong neutralization activity against wild-type SARS-CoV-2 and the Alpha and Delta variants. These results identify a vulnerable target site on coronaviruses for development of pan-sarbecovirus nAbs and vaccines.


Subject(s)
Antibodies, Viral/immunology , Antigens, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/genetics , Antibodies, Viral/metabolism , Antibody Affinity , Antibody Specificity , Antigen-Antibody Reactions , Antigens, Viral/chemistry , Antigens, Viral/genetics , Broadly Neutralizing Antibodies/genetics , Broadly Neutralizing Antibodies/metabolism , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/immunology , Humans , Immunoglobulin Fragments/immunology , Molecular Docking Simulation , Monte Carlo Method , Neutralization Tests , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Domains , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
6.
Life Sci ; 293: 120324, 2022 Mar 15.
Article in English | MEDLINE | ID: covidwho-1616648

ABSTRACT

AIMS: Angiotensin-converting enzyme (ACE) 2 is the receptor for severe acute respiratory syndrome coronavirus 2 which causes coronavirus disease 2019 (COVID-19). Viral cellular entry requires ACE2 and transmembrane protease serine 2 (TMPRSS2). ACE inhibitors (ACEIs) or angiotensin (Ang) receptor blockers (ARBs) influence ACE2 in animals, though evidence in human lungs is lacking. We investigated ACE2 and TMPRSS2 in type II pneumocytes, the key cells that maintain lung homeostasis, in lung parenchymal of ACEI/ARB-treated subjects compared to untreated control subjects. MAIN METHODS: Ang II and Ang-(1-7) levels and ACE2 and TMPRSS2 protein expression were measured by radioimmunoassay and immunohistochemistry, respectively. KEY FINDINGS: We found that the ratio Ang-(1-7)/Ang II, a surrogate marker of ACE2 activity, as well as the amount of ACE2-expressing type II pneumocytes were not different between ACEI/ARB-treated and untreated subjects. ACE2 protein content correlated positively with smoking habit and age. The percentage of TMPRSS2-expressing type II pneumocytes was higher in males than females and in subjects under 60 years of age but it was not different between ACEI/ARB-treated and untreated subjects. However, there was a positive association of TMPRSS2 protein content with age and smoking in ACEI/ARB-treated subjects, with high TMPRSS2 protein levels most evident in ACEI/ARB-treated older adults and smokers. SIGNIFICANCE: ACEI/ARB treatment influences human lung TMPRSS2 but not ACE2 protein content and this effect is dependent on age and smoking habit. This finding may help explain the increased susceptibility to COVID-19 seen in smokers and older patients with treated cardiovascular-related pathologies.


Subject(s)
Alveolar Epithelial Cells/metabolism , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Renin-Angiotensin System/physiology , Serine Endopeptidases/metabolism , Adult , Age Factors , Aged , Alveolar Epithelial Cells/chemistry , Alveolar Epithelial Cells/drug effects , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/analysis , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Female , Humans , Lung/chemistry , Lung/drug effects , Lung/metabolism , Male , Middle Aged , Peptide Fragments/metabolism , Renin-Angiotensin System/drug effects , Retrospective Studies , Serine Endopeptidases/analysis , Smoking/metabolism , Smoking/pathology
7.
Rev Med Virol ; 31(5): 1-12, 2021 09.
Article in English | MEDLINE | ID: covidwho-1575376

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell by binding to angiotensin-converting enzyme 2 (ACE2) receptor. Other important proteins involved in this process include disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) also known as tumour necrosis factor-α-converting enzyme and transmembrane serine protease 2. ACE2 converts angiotensin II (Ang II) to angiotensin (1-7), to balance the renin angiotensin system. Membrane-bound ACE2 ectodomain shedding is mediated by ADAM17 upon viral spike binding, Ang II overproduction and in several diseases. The shed soluble ACE2 (sACE2) retains its catalytic activity, but its precise role in viral entry is still unclear. Therapeutic sACE2 is claimed to exert dual effects; reduction of excess Ang II and blocking viral entry by masking the spike protein. Nevertheless, the paradox is why SARS-CoV-2 comorbid patients struggle to attain such benefit in viral infection despite having a high amount of sACE2. In this review, we discuss the possible detrimental role of sACE2 and speculate on a series of events where protease primed or non-primed virus-sACE2 complex might enter the host cell. As extracellular virus can bind many sACE2 molecules, sACE2 level could be reduced drastically upon endocytosis by the host cell. A consequential rapid rise in Ang II level could potentially aggravate disease severity through Ang II-angiotensin II receptor type 1 (AT1R) axis in comorbid patients. Hence, monitoring sACE2 and Ang II level in coronavirus disease 2019 comorbid patients are crucial to ensure safe and efficient intervention using therapeutic sACE2 and vaccines.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , ADAM17 Protein/genetics , ADAM17 Protein/metabolism , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , COVID-19/virology , Comorbidity , Humans , Peptide Fragments/metabolism , SARS-CoV-2/physiology
8.
J Renin Angiotensin Aldosterone Syst ; 2021: 6824259, 2021.
Article in English | MEDLINE | ID: covidwho-1546597

ABSTRACT

Coronavirus disease 2019 (COVID-19) can occur due to contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has no confined treatment and, consequently, has high hospitalization and mortality rates. Moreover, people who contract COVID-19 present systemic inflammatory spillover. It is now known that COVID-19 pathogenesis is linked to the renin-angiotensin system (RAS). COVID-19 invades host cells via the angiotensin-converting enzyme 2 (ACE2) receptor-as such, an individual's susceptibility to COVID-19 increases alongside the upregulation of this receptor. COVID-19 has also been associated with interstitial pulmonary fibrosis, which leads to acute respiratory distress, cardiomyopathy, and shock. These outcomes are thought to result from imbalances in angiotensin (Ang) II and Ang-(1-7)/alamandine activity. ACE2, Ang-(1-7), and alamandine have potent anti-inflammatory properties, and some SARS-CoV-2 patients exhibit high levels of ACE2 and Ang-(1-7). This phenomenon could indicate a failing physiological response to prevent or reduce the severity of inflammation-mediated pulmonary injuries. Alamandine, which is another protective component of the RAS, has several health benefits owing to its antithrombogenic, anti-inflammatory, and antifibrotic characteristics. Alamandine alleviates pulmonary fibrosis via the Mas-related G protein-coupled receptor D (MrgD). Thus, a better understanding of this pathway could uncover novel pharmacological strategies for altering proinflammatory environments within the body. Following such strategies could inhibit fibrosis after SARS-CoV-2 infection and, consequently, prevent COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Oligopeptides/therapeutic use , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , COVID-19/metabolism , Humans , Peptide Fragments/metabolism , Renin-Angiotensin System/drug effects
9.
Int J Mol Sci ; 22(23)2021 Nov 30.
Article in English | MEDLINE | ID: covidwho-1542585

ABSTRACT

Pulmonary fibrosis is a chronic, fibrotic lung disease affecting 3 million people worldwide. The ACE2/Ang-(1-7)/MasR axis is of interest in pulmonary fibrosis due to evidence of its anti-fibrotic action. Current scientific evidence supports that inhibition of ACE2 causes enhanced fibrosis. ACE2 is also the primary receptor that facilitates the entry of SARS-CoV-2, the virus responsible for the current COVID-19 pandemic. COVID-19 is associated with a myriad of symptoms ranging from asymptomatic to severe pneumonia and acute respiratory distress syndrome (ARDS) leading to respiratory failure, mechanical ventilation, and often death. One of the potential complications in people who recover from COVID-19 is pulmonary fibrosis. Cigarette smoking is a risk factor for fibrotic lung diseases, including the idiopathic form of this disease (idiopathic pulmonary fibrosis), which has a prevalence of 41% to 83%. Cigarette smoke increases the expression of pulmonary ACE2 and is thought to alter susceptibility to COVID-19. Cannabis is another popular combustible product that shares some similarities with cigarette smoke, however, cannabis contains cannabinoids that may reduce inflammation and/or ACE2 levels. The role of cannabis smoke in the pathogenesis of pulmonary fibrosis remains unknown. This review aimed to characterize the ACE2-Ang-(1-7)-MasR Axis in the context of pulmonary fibrosis with an emphasis on risk factors, including the SARS-CoV-2 virus and exposure to environmental toxicants. In the context of the pandemic, there is a dire need for an understanding of pulmonary fibrotic events. More research is needed to understand the interplay between ACE2, pulmonary fibrosis, and susceptibility to coronavirus infection.


Subject(s)
Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Fibrosis/metabolism , Peptide Fragments/metabolism , Proto-Oncogene Mas/metabolism , Cannabis , Cigarette Smoking , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Inflammation , Lung/pathology , Pandemics , Respiration, Artificial , Respiratory Distress Syndrome , Respiratory Insufficiency/metabolism , Risk Factors , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
10.
Sovrem Tekhnologii Med ; 12(6): 98-108, 2021.
Article in English | MEDLINE | ID: covidwho-1527052

ABSTRACT

The rapidly accumulating information about the new coronavirus infection and the ambiguous results obtained by various authors necessitate further research aiming at prevention and treatment of this disease. At the moment, there is convincing evidence that the pathogen affects not only the respiratory but also the central nervous system (CNS). The aim of the study is to provide an insight into the molecular mechanisms underlying the damage to the CNS caused by the new coronavirus SARS-CoV-2. Results: By analyzing the literature, we provide evidence that the brain is targeted by this virus. SARS-CoV-2 enters the body with the help of the target proteins: angiotensin-converting enzyme 2 (ACE2) and associated serine protease TMPRSS2 of the nasal epithelium. Brain damage develops before the onset of pulmonary symptoms. The virus spreads through the brain tissue into the piriform cortex, basal ganglia, midbrain, and hypothalamus. Later, the substantia nigra of the midbrain, amygdala, hippocampus, and cerebellum become affected. Massive death of neurons, astrogliosis and activation of microglia develop at the next stage of the disease. By day 4, an excessive production of proinflammatory cytokines in the brain, local neuroinflammation, breakdown of the blood-brain barrier, and impaired neuroplasticity are detected. These changes imply the involvement of a vascular component driven by excessive activity of matrix metalloproteinases, mediated by CD147. The main players in the pathogenesis of COVID-19 in the brain are products of angiotensin II (AT II) metabolism, largely angiotensin 1-7 (AT 1-7) and angiotensin IV (AT IV). There are conflicting data regarding their role in damage to the CNS in various diseases, including the coronavirus infection.The second participant in the pathogenesis of brain damage in COVID-19 is CD147 - the inducer of extracellular matrix metalloproteinases. This molecule is expressed on the endothelial cells of cerebral microvessels, as well as on leukocytes present in the brain during neuroinflammation. The CD147 molecule plays a significant role in maintaining the structural and functional integrity of the blood-brain barrier by controlling the basal membrane permeability and by mediating the astrocyte-endothelial interactions. Via the above mechanisms, an exposure to SARS-CoV-2 leads to direct damage to the neurovascular unit of the brain.


Subject(s)
Astrocytes/metabolism , Brain/metabolism , COVID-19/metabolism , SARS-CoV-2/metabolism , Angiotensin I/metabolism , Angiotensin II/analogs & derivatives , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Basigin , Humans , Peptide Fragments/metabolism , Serine Endopeptidases/metabolism
11.
Biosci Rep ; 41(12)2021 12 22.
Article in English | MEDLINE | ID: covidwho-1506391

ABSTRACT

The angiotensin-converting enzyme (ACE)/Angiotensin II (Ang II) and angiotensin-converting enzyme 2 (ACE2)/angiotensin-(1-7) (Ang-(1-7)) pathways are coexpressed in most tissues. The balance between these pathways determines, at least in part, whether tissue damage will occur in response to pathological stimuli. The present study tested the hypothesis that male sex and high blood pressure are associated with ACE/ACE2 imbalance in the lungs. Experiments were conducted in male and female Wistar rats and spontaneously hypertensive rats (SHRs). Lung ACE and ACE2 gene expression was also evaluated in normotensive and hypertensive humans using the Genotype-Tissue Expression (GTEx) project. Compared with Wistar rats and female SHRs, male SHRs displayed reduced lung ACE2 mRNA, ACE2 protein abundance and ACE2 activity, and increased Ang II concentration. Lung ACE mRNA levels were higher in male SHRs than in Wistar rats, whereas lung ACE protein abundance and activity were similar among the four groups of rats. Lung Ang-(1-7) concentration was higher in female than in male SHRs (89 ± 17 vs. 43 ± 2 pg/g, P<0.05). Lung ACE to ACE2 mRNA expression in hypertensive patients was significantly higher than that in normotensive subjects. Taken together, these results demonstrate that male hypertensive rats display imbalance between the ACE/Ang II and ACE2/Ang-(1-7) pathways in the lungs mainly attributable to ACE2 down-regulation. Further studies should be conducted to investigate whether this imbalance between ACE/ACE2 may promote and accelerate lung injury in respiratory infections, including coronavirus disease 2019 (COVID-19).


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Lung/metabolism , Peptidyl-Dipeptidase A/metabolism , ADAM17 Protein/metabolism , Angiotensin I/metabolism , Angiotensin II/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Down-Regulation , Female , Male , Peptide Fragments/metabolism , Peptidyl-Dipeptidase A/genetics , RNA, Messenger/metabolism , Rats , Rats, Inbred SHR , Rats, Wistar , Sex Characteristics
12.
Anal Bioanal Chem ; 413(30): 7559-7585, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1503906

ABSTRACT

Subunit vaccines based on the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 provide one of the most promising strategies to fight the COVID-19 pandemic. The detailed characterization of the protein primary structure by mass spectrometry (MS) is mandatory, as described in ICHQ6B guidelines. In this work, several recombinant RBD proteins produced in five expression systems were characterized using a non-conventional protocol known as in-solution buffer-free digestion (BFD). In a single ESI-MS spectrum, BFD allowed very high sequence coverage (≥ 99%) and the detection of highly hydrophilic regions, including very short and hydrophilic peptides (2-8 amino acids), and the His6-tagged C-terminal peptide carrying several post-translational modifications at Cys538 such as cysteinylation, homocysteinylation, glutathionylation, truncated glutathionylation, and cyanylation, among others. The analysis using the conventional digestion protocol allowed lower sequence coverage (80-90%) and did not detect peptides carrying most of the above-mentioned PTMs. The two C-terminal peptides of a dimer [RBD(319-541)-(His)6]2 linked by an intermolecular disulfide bond (Cys538-Cys538) with twelve histidine residues were only detected by BFD. This protocol allows the detection of the four disulfide bonds present in the native RBD, low-abundance scrambling variants, free cysteine residues, O-glycoforms, and incomplete processing of the N-terminal end, if present. Artifacts generated by the in-solution BFD protocol were also characterized. BFD can be easily implemented; it has been applied to the characterization of the active pharmaceutical ingredient of two RBD-based vaccines, and we foresee that it can be also helpful to the characterization of mutated RBDs.


Subject(s)
Cysteine/metabolism , Peptide Fragments/metabolism , Protein Processing, Post-Translational , Spectrometry, Mass, Electrospray Ionization/methods , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Cysteine/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Peptide Fragments/chemistry , Protein Binding , Protein Domains , Protein Subunits
13.
Mol Cell Biochem ; 477(1): 225-240, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1469743

ABSTRACT

Severe acute respiratory syndrome-coronavirus-2 (COVID-19) virus uses Angiotensin-Converting Enzyme 2 (ACE2) as a gateway for their entry into the human body. The ACE2 with cleaved products have emerged as major contributing factors to multiple physiological functions and pathogenic complications leading to the clinical consequences of the COVID-19 infection Decreased ACE2 expression restricts the viral entry into the human cells and reduces the viral load. COVID-19 infection reduces the ACE2 expression and induces post-COVID-19 complications like pneumonia and lung injury. The modulation of the ACE2-Ang (1-7)-Mas (AAM) axis is also being explored as a modality to treat post-COVID-19 complications. Evidence indicates that specific food components may modulate the AAM axis. The variations in the susceptibility to COVID-19 infection and the post-COVID its complications are being correlated with varied dietary habits. Some of the food substances have emerged to have supportive roles in treating post-COVID-19 complications and are being considered as adjuvants to the COVID-19 therapy. It is possible that some of their active ingredients may emerge as the direct treatment for the COVID-19.


Subject(s)
Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , COVID-19/diet therapy , Peptide Fragments/metabolism , Proto-Oncogene Mas/metabolism , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Dietary Proteins/pharmacology , Flavonoids/pharmacology , Humans , Lung/pathology , Lung/virology , Plant Oils/pharmacology , Polyphenols/pharmacology , Terpenes/pharmacology , Virus Internalization , Vitamins/pharmacology
14.
STAR Protoc ; 2(3): 100635, 2021 09 17.
Article in English | MEDLINE | ID: covidwho-1386746

ABSTRACT

Understanding T-cell responses requires identifying viral peptides presented by human leukocyte antigens (HLAs). X-ray crystallography can be used to visualize their presentation. This protocol describes the expression, purification, and crystallization of HLA-A∗02:01, one of the most frequent HLA in the global population in complex with peptides derived from the SARS-CoV-2 nucleocapsid protein. This protocol can be applied to different HLA class I molecules bound to other peptides. For complete details on the use and execution of this protocol, please refer to Szeto et al. (2021).


Subject(s)
COVID-19/metabolism , Coronavirus Nucleocapsid Proteins/chemistry , HLA-A2 Antigen/chemistry , Peptide Fragments/chemistry , SARS-CoV-2/metabolism , T-Lymphocytes/immunology , COVID-19/immunology , COVID-19/virology , Coronavirus Nucleocapsid Proteins/isolation & purification , Coronavirus Nucleocapsid Proteins/metabolism , Crystallography, X-Ray , Epitopes, T-Lymphocyte/immunology , HLA-A2 Antigen/metabolism , Humans , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Phosphoproteins/chemistry , Phosphoproteins/isolation & purification , Phosphoproteins/metabolism
16.
Viruses ; 13(8)2021 08 23.
Article in English | MEDLINE | ID: covidwho-1367926

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in a global pandemic causing over 195 million infections and more than 4 million fatalities as of July 2021.To date, it has been demonstrated that a number of mutations in the spike glycoprotein (S protein) of SARS-CoV-2 variants of concern abrogate or reduce the neutralization potency of several therapeutic antibodies and vaccine-elicited antibodies. Therefore, the development of additional vaccine platforms with improved supply and logistic profile remains a pressing need. In this work, we have validated the applicability of a peptide-based strategy focused on a preventive as well as a therapeutic purpose. On the basis of the involvement of the dipeptidyl peptidase 4 (DPP4), in addition to the angiotensin converting enzyme 2 (ACE2) receptor in the mechanism of virus entry, we analyzed peptides bearing DPP4 sequences by protein-protein docking and assessed their ability to block pseudovirus infection in vitro. In parallel, we have selected and synthetized peptide sequences located within the highly conserved receptor-binding domain (RBD) of the S protein, and we found that RBD-based vaccines could better promote elicitation of high titers of neutralizing antibodies specific against the regions of interest, as confirmed by immunoinformatic methodologies and in vivo studies. These findings unveil a key antigenic site targeted by broadly neutralizing antibodies and pave the way to the design of pan-coronavirus vaccines.


Subject(s)
Dipeptidyl Peptidase 4/chemistry , Peptide Fragments/immunology , Peptide Fragments/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Broadly Neutralizing Antibodies/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Chlorocebus aethiops , Dipeptidyl Peptidase 4/metabolism , Epitopes, T-Lymphocyte/immunology , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Binding , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Vero Cells , Virus Internalization , COVID-19 Drug Treatment
17.
Adv Biol Regul ; 81: 100820, 2021 08.
Article in English | MEDLINE | ID: covidwho-1351735

ABSTRACT

The article describes the possible pathophysiological origin of COVID-19 and the crucial role of renin-angiotensin system (RAS), providing several "converging" evidence in support of this hypothesis. SARS-CoV-2 has been shown to initially upregulate ACE2 systemic activity (early phase), which can subsequently induce compensatory responses leading to upregulation of both arms of the RAS (late phase) and consequently to critical, advanced and untreatable stages of COVID-19 disease. The main and initial actors of the process are ACE2 and ADAM17 zinc-metalloproteases, which, initially triggered by SARS-CoV-2 spike proteins, work together in increasing circulating Ang 1-7 and Ang 1-9 peptides and downstream (Mas and Angiotensin type 2 receptors) pathways with anti-inflammatory, hypotensive and antithrombotic activities. During the late phase of severe COVID-19, compensatory secretion of renin and ACE enzymes are subsequently upregulated, leading to inflammation, hypertension and thrombosis, which further sustain ACE2 and ADAM17 upregulation. Based on this hypothesis, COVID-19-phase-specific inhibition of different RAS enzymes is proposed as a pharmacological strategy against COVID-19 and vaccine-induced adverse effects. The aim is to prevent the establishment of positive feedback-loops, which can sustain hyperactivity of both arms of the RAS independently of viral trigger and, in some cases, may lead to Long-COVID syndrome.


Subject(s)
ADAM17 Protein/biosynthesis , Angiotensin-Converting Enzyme 2/biosynthesis , COVID-19/metabolism , Renin-Angiotensin System , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , ADAM17 Protein/antagonists & inhibitors , Angiotensin I/metabolism , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Gene Expression Regulation, Enzymologic , Humans , Peptide Fragments/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Up-Regulation , COVID-19 Drug Treatment
18.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: covidwho-1350316

ABSTRACT

Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer's disease (AD), the major form of dementia, ß-amyloid (Aß) levels in the blood are increased; however, the impact of elevated Aß levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aß1-42, but not Aß1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aß1-42. Furthermore, Aß1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aß1-42 show that the clearance of Aß1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aß antibody. In conclusion, these findings suggest that the binding of Aß1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aß1-42 in the blood is beneficial to the fight against COVID-19 and AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Peptide Fragments/metabolism , SARS-CoV-2/enzymology , Spike Glycoprotein, Coronavirus/metabolism , A549 Cells , Alzheimer Disease/complications , Alzheimer Disease/metabolism , Amyloid beta-Peptides/chemistry , Animals , COVID-19/complications , COVID-19/metabolism , Chlorocebus aethiops , Humans , Interleukin-6/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Peptide Fragments/chemistry , Protein Subunits/chemistry , Protein Subunits/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells , Virus Internalization
19.
Biomolecules ; 11(7)2021 07 19.
Article in English | MEDLINE | ID: covidwho-1328091

ABSTRACT

Proteins of the major histocompatibility complex (MHC) class I, or human leukocyte antigen (HLA) in humans interact with endogenous peptides and present them to T cell receptors (TCR), which in turn tune the immune system to recognize and discriminate between self and foreign (non-self) peptides. Of especial importance are peptides derived from tumor-associated antigens. T cells recognizing these peptides are found in cancer patients, but not in cancer-free individuals. What stimulates this recognition, which is vital for the success of checkpoint based therapy? A peptide derived from the protein p53 (residues 161-169 or p161) was reported to show this behavior. T cells recognizing this unmodified peptide could be further stimulated in vitro to create effective cancer killing CTLs (cytotoxic T lymphocytes). We hypothesize that the underlying difference may arise from post-translational glycosylation of p161 in normal individuals, likely masking it against recognition by TCR. Defects in glycosylation in cancer cells may allow the presentation of the native peptide. We investigate the structural consequences of such peptide glycosylation by investigating the associated structural dynamics.


Subject(s)
HLA-A24 Antigen/chemistry , HLA-A24 Antigen/metabolism , Receptors, Antigen, T-Cell/metabolism , Tumor Suppressor Protein p53/metabolism , Acetylglucosamine/metabolism , Glycosylation , Human Immunodeficiency Virus Proteins/chemistry , Human Immunodeficiency Virus Proteins/metabolism , Humans , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Protein Conformation , Receptors, Antigen, T-Cell/chemistry , Tumor Suppressor Protein p53/chemistry
20.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L485-L489, 2021 08 01.
Article in English | MEDLINE | ID: covidwho-1299247

ABSTRACT

COVID-19, the disease caused by the SARS-CoV-2 virus, can progress to multisystem organ failure and viral sepsis characterized by respiratory failure, arrhythmias, thromboembolic complications, and shock with high mortality. Autopsy and preclinical evidence implicate aberrant complement activation in endothelial injury and organ failure. Erythrocytes express complement receptors and are capable of binding immune complexes; therefore, we investigated complement activation in patients with COVID-19 using erythrocytes as a tool to diagnose complement activation. We discovered enhanced C3b and C4d deposition on erythrocytes in COVID-19 sepsis patients and non-COVID sepsis patients compared with healthy controls, supporting the role of complement in sepsis-associated organ injury. Our data suggest that erythrocytes may contribute to a precision medicine approach to sepsis and have diagnostic value in monitoring complement dysregulation in COVID-19-sepsis and non-COVID sepsis and identifying patients who may benefit from complement targeted therapies.


Subject(s)
COVID-19/complications , Complement Activation/immunology , Complement C3b/immunology , Complement C4b/immunology , Erythrocytes/immunology , Peptide Fragments/immunology , Respiratory Insufficiency/diagnosis , Sepsis/diagnosis , COVID-19/immunology , COVID-19/virology , Complement C3b/metabolism , Complement C4b/metabolism , Erythrocytes/metabolism , Erythrocytes/virology , Female , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Respiratory Insufficiency/immunology , Respiratory Insufficiency/metabolism , Respiratory Insufficiency/virology , SARS-CoV-2/isolation & purification , Sepsis/immunology , Sepsis/metabolism , Sepsis/virology
SELECTION OF CITATIONS
SEARCH DETAIL